## Laws of Exponents

Write the following problems out completely using only the definition of exponents and multiplication or division.
Example: $\mathrm{x}^{3} \cdot \mathrm{x}^{2}=(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \cdot(\mathrm{x} \cdot \mathrm{x})=\mathrm{x}^{5}$

1. $\mathrm{a}^{4} \cdot \mathrm{a}^{3}$
2. $n^{5} \cdot n^{4}$
3. $x^{2} \cdot x^{9}$
4. $y \cdot y^{6} \cdot y^{2}$

In the above cases, the base number is the same in each problem. What is the relationship between the exponents in the problem and the exponent in the final, simplified answer? $\qquad$
Example: $\frac{x^{5}}{x^{2}}=\frac{x \bullet x \bullet x \bullet x \bullet x}{x \bullet x}=\frac{x \bullet x \bullet x \bullet x \bullet x}{x \bullet x}=\frac{x^{3}}{1}=x^{3} \quad$ Notice how anything divided by itself $=1$.
5. $\frac{y^{3}}{y^{2}}$
6. $\frac{a^{7}}{a^{3}}$
7. $\frac{m^{6}}{m^{8}}$
8. $\frac{x^{5}}{x^{6}}$

Again, in the above cases, the base number is the same in each problem. What is the relationship between the exponents in the problem and the exponent in the final, simplified answer? $\qquad$
In the following problems, you may use the shortcuts you discovered, or work them completely out.
9. $\frac{x^{2} y^{4}}{y^{6}}$
10. $\frac{a^{3} b}{a^{8} b^{3}}$
11. $\frac{2 x^{5}}{6 x^{6}}$
12. $\frac{x^{11}}{x^{18} y^{11}}$
13. $\frac{12 y^{5}}{18 y^{5}}$
14. $-\frac{15 a^{17}}{25 a^{14}}$
15. $\frac{3 b^{22}}{9 b^{26}}$
16. $\frac{10 x^{5} y^{7}}{35 x^{12} y^{5}}$

