Laws of Exponents

$$
\begin{array}{ll}
x^{3} \text { means } x \cdot x \cdot x & x^{2} \cdot x^{3}=x^{2+3}=x^{5} \\
x^{-2} \text { means } \frac{1}{x^{2}} & \left(x^{3}\right)^{4}=x^{3.4}=x^{12} \\
x^{0}=1 \text { for } x \neq 0 & \frac{x^{6}}{x^{4}}=x^{6-4}=x^{2} \\
0^{0} \text { is undefined } & \left(\frac{2 x}{y}\right)^{3}=\frac{2^{3} x^{3}}{y^{3}}
\end{array}
$$

Rational Exponents

$x^{\frac{1}{2}}$ means \sqrt{x}
$x^{\frac{1}{3}}$ means $\sqrt[3]{x}$
$x^{\frac{1}{4}}$ means $\sqrt[4]{x}$
$x^{\frac{2}{3}}$ means $\sqrt[3]{x^{2}}$
$x^{\frac{3}{4}}$ means $\sqrt[4]{x^{3}}$
$x^{\frac{2}{5}}$ means $\sqrt[5]{x^{2}}$

In General
$x^{\frac{1}{n}}$ means $\sqrt[n]{x}$
$x^{\frac{m}{n}}$ means $\sqrt[n]{x^{m}}$

